Le principe de Pascal-Hume et le fondement des sciences physiques PDF

Il est en outre considéré comme l’un des plus importants représentants du logicisme. Durant son enfance, Frege a rencontré des philosophies qui guideront sa future carrière scientifique. Frege a étudié le principe de Pascal-Hume et le fondement des sciences physiques PDF un gymnasium à Wismar et est diplômé en 1869.


La pensée contemporaine est oblitérée par un divorce très profond entre la métaphysique et la théorie scientifique. L’existence de la matière, qui constitue pour la physique une hypothèse fondamentale, est mise en question par la philosophie depuis la critique humienne du principe de causalité. L’auteur montre que cette existence peut être démontrée logiquement grâce à un principe différent, qui n’est pas moins rationnel que les principes de la déduction et qui peut être formulé comme un principe a priori de probabilité. On est ainsi conduit à une révolution dans la conception de la raison, qui fait apparaître une continuité entre Pascal, Hume et Kant.

Son professeur Gustav Adolf Leo Sachse, qui était un poète, a joué le rôle le plus important dans la détermination de la future carrière scientifique de Frege, l’encourageant à continuer ses études à l’université de Jena. Frege est matriculé à l’Université d’Iéna au printemps de 1869 en tant que citoyen de la Confédération de l’Allemagne du Nord. Durant les quatre semestres de ses études, il a assisté à environ vingt conférences, la plupart sur les mathématiques et la physique. En 1874, Frege est retourné à Iéna et, obtient l’habilitation universitaire des enseignants à la faculté de philosophie,  Rechnungsmethoden, die sich auf einer Erweiterung des Größenbegriffes Gründen  ou  méthodes de calcul, qui sont basées sur la généralisation du concept de la taille , qui était fondamentalement basé sur la théorie des fonctions complexes. Les premiers travaux de Frege montrent une orientation principalement tournée vers la géométrie et l’analyse complexe. Au cours de ses recherches, il lui est venu à l’idée que l’arithmétique faisait partie de la logique.

La capacité d’une personne à se familiariser avec les entiers naturels n’est pas principalement dû à l’expérience, ni à l’espace géométrique, mais au langage et à la capacité d’analyse de la pensée, communément appelée logique. Il a exposé les fondements d’un entier naturel basé sur une logique mathématique possible et a ainsi suggéré qu’une telle structure pourrait être possible. Ils ont eu deux enfants qui sont morts très jeunes. Nous ne connaissons que peu de choses de la vie privée de Frege, sa retraite, son silence et sa nature pensive. En 1918, Frege prend sa retraite.

En plus de sa crise créatrice, le paradoxe découvert par Russell a été accompagné de tragédies personnelles de sa vie, comme la perte de sa femme en 1904, et la grave détérioration de sa propre santé. Frege refuse l’invitation que lui fait Bertrand Russell, pour assister au cinquième congrès mathématique international à Cambridge en 1912. 1918, cependant, il a publié des articles importants, traitant de la nature de la pensée selon Frege, la logique philosophique et mathématique y est détaillée. Ces publications et leur élan, laissent penser que sa période dépressive, qui avait été si longue, était, au moins temporairement, terminé. Il a alors commencé à considérer la géométrie comme une science possible pour la fondation des mathématiques. Bien qu’il ait commencé à élaborer cette idée, il n’a pas pu approfondir, à cause de sa mort. Il est mort d’épigastralgie à Bad Kleinen le 26 juillet 1925, dans sa ville natale, Wismar, où il a été enterré.

Le Begriffsschrift a ouvert un nouveau terrain, et un traitement rigoureux des idées de fonctions et de variables. En effet, Frege a inventé la logique des prédicats axiomatique, en grande partie grâce à son invention de variables quantifiées, qui finit par devenir omniprésente en mathématiques et en logique. L’un des objectifs de Frege était d’isoler des principes d’inférence logiques, de sorte qu’on n’ait nullement besoin de l’intuition. S’il y avait un élément intuitif, il devait être isolé et représenté séparément comme axiome : à partir de là, la preuve devait être purement logique.

Fx, c’est-à-dire l’ensemble de tous les Fs, et de manière similaire pour Gx. L’ensemble de Fs est identique à l’ensemble de Gs dans le cas où chaque F est un G et chaque G est un F. La logique de Frege, maintenant connue sous le nom de logique du second ordre, peut être affaiblie par la logique dite prédicative de second ordre. Le travail de Frege en logique a eu peu d’attention internationale jusqu’en 1903, lorsque Russell a écrit une annexe aux The Principles of Mathematics indiquant ses différences avec Frege. Frege a développé une conception du langage à la suite de ses recherches logiques.

Comment alors expliquer que les mathématiques ne se réduisent pas à de vaines tautologies, comme  Paul est Paul  ? C’est que deux formules, qui dénotent pourtant le même objet x, n’ont pas nécessairement le même sens. Nous apprenons par cette formule que deux concepts distincts renvoient à un seul et même objet. En effet le concept se dit d’un objet, mais ne se confond pas avec lui.

This entry was posted in Sports et passions. Bookmark the permalink.